Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome and Secretome Analyses of the Wood Decay Fungus Wolfiporia cocos Support Alternative Mechanisms of Lignocellulose Conversion.

Identifieur interne : 001617 ( Main/Exploration ); précédent : 001616; suivant : 001618

Transcriptome and Secretome Analyses of the Wood Decay Fungus Wolfiporia cocos Support Alternative Mechanisms of Lignocellulose Conversion.

Auteurs : Jill Gaskell [États-Unis] ; Robert A. Blanchette [États-Unis] ; Philip E. Stewart [États-Unis] ; Sandra Splinter Bondurant [États-Unis] ; Marie Adams [États-Unis] ; Grzegorz Sabat [États-Unis] ; Phil Kersten [États-Unis] ; Dan Cullen [États-Unis]

Source :

RBID : pubmed:27107121

Descripteurs français

English descriptors

Abstract

UNLABELLED

Certain wood decay basidiomycetes, collectively referred to as brown rot fungi, rapidly depolymerize cellulose while leaving behind the bulk of cell wall lignin as a modified residue. The mechanism(s) employed is unclear, but considerable evidence implicates the involvement of diffusible oxidants generated via Fenton-like chemistry. Toward a better understanding of this process, we have examined the transcriptome and secretome of Wolfiporia cocos when cultivated on media containing glucose, purified crystalline cellulose, aspen (Populus grandidentata), or lodgepole pine (Pinus contorta) as the sole carbon source. Compared to the results obtained with glucose, 30, 183, and 207 genes exhibited 4-fold increases in transcript levels in cellulose, aspen, and lodgepole pine, respectively. Mass spectrometry identified peptides corresponding to 64 glycoside hydrolase (GH) proteins, and of these, 17 corresponded to transcripts upregulated on one or both woody substrates. Most of these genes were broadly categorized as hemicellulases or chitinases. Consistent with an important role for hydroxyl radical in cellulose depolymerization, high transcript levels and upregulation were observed for genes involved in iron homeostasis, iron reduction, and extracellular peroxide generation. These patterns of regulation differ markedly from those of the closely related brown rot fungus Postia placenta and expand the number of enzymes potentially involved in the oxidative depolymerization of cellulose.

IMPORTANCE

The decomposition of wood is an essential component of nutrient cycling in forest ecosystems. Few microbes have the capacity to efficiently degrade woody substrates, and the mechanism(s) is poorly understood. Toward a better understanding of these processes, we show that when grown on wood as a sole carbon source the brown rot fungus W. cocos expresses a unique repertoire of genes involved in oxidative and hydrolytic conversions of cell walls.


DOI: 10.1128/AEM.00639-16
PubMed: 27107121
PubMed Central: PMC4907202


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome and Secretome Analyses of the Wood Decay Fungus Wolfiporia cocos Support Alternative Mechanisms of Lignocellulose Conversion.</title>
<author>
<name sortKey="Gaskell, Jill" sort="Gaskell, Jill" uniqKey="Gaskell J" first="Jill" last="Gaskell">Jill Gaskell</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Products Laboratory, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Products Laboratory, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blanchette, Robert A" sort="Blanchette, Robert A" uniqKey="Blanchette R" first="Robert A" last="Blanchette">Robert A. Blanchette</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stewart, Philip E" sort="Stewart, Philip E" uniqKey="Stewart P" first="Philip E" last="Stewart">Philip E. Stewart</name>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana</wicri:regionArea>
<placeName>
<region type="state">Montana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bondurant, Sandra Splinter" sort="Bondurant, Sandra Splinter" uniqKey="Bondurant S" first="Sandra Splinter" last="Bondurant">Sandra Splinter Bondurant</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Adams, Marie" sort="Adams, Marie" uniqKey="Adams M" first="Marie" last="Adams">Marie Adams</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sabat, Grzegorz" sort="Sabat, Grzegorz" uniqKey="Sabat G" first="Grzegorz" last="Sabat">Grzegorz Sabat</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kersten, Phil" sort="Kersten, Phil" uniqKey="Kersten P" first="Phil" last="Kersten">Phil Kersten</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Products Laboratory, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Products Laboratory, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cullen, Dan" sort="Cullen, Dan" uniqKey="Cullen D" first="Dan" last="Cullen">Dan Cullen</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Products Laboratory, Madison, Wisconsin, USA dcullen@wisc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>USDA Forest Products Laboratory, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27107121</idno>
<idno type="pmid">27107121</idno>
<idno type="doi">10.1128/AEM.00639-16</idno>
<idno type="pmc">PMC4907202</idno>
<idno type="wicri:Area/Main/Corpus">001824</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001824</idno>
<idno type="wicri:Area/Main/Curation">001824</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001824</idno>
<idno type="wicri:Area/Main/Exploration">001824</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome and Secretome Analyses of the Wood Decay Fungus Wolfiporia cocos Support Alternative Mechanisms of Lignocellulose Conversion.</title>
<author>
<name sortKey="Gaskell, Jill" sort="Gaskell, Jill" uniqKey="Gaskell J" first="Jill" last="Gaskell">Jill Gaskell</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Products Laboratory, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Products Laboratory, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blanchette, Robert A" sort="Blanchette, Robert A" uniqKey="Blanchette R" first="Robert A" last="Blanchette">Robert A. Blanchette</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota</wicri:regionArea>
<placeName>
<region type="state">Minnesota</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Stewart, Philip E" sort="Stewart, Philip E" uniqKey="Stewart P" first="Philip E" last="Stewart">Philip E. Stewart</name>
<affiliation wicri:level="2">
<nlm:affiliation>Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana</wicri:regionArea>
<placeName>
<region type="state">Montana</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bondurant, Sandra Splinter" sort="Bondurant, Sandra Splinter" uniqKey="Bondurant S" first="Sandra Splinter" last="Bondurant">Sandra Splinter Bondurant</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Adams, Marie" sort="Adams, Marie" uniqKey="Adams M" first="Marie" last="Adams">Marie Adams</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sabat, Grzegorz" sort="Sabat, Grzegorz" uniqKey="Sabat G" first="Grzegorz" last="Sabat">Grzegorz Sabat</name>
<affiliation wicri:level="2">
<nlm:affiliation>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kersten, Phil" sort="Kersten, Phil" uniqKey="Kersten P" first="Phil" last="Kersten">Phil Kersten</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Products Laboratory, Madison, Wisconsin, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>USDA Forest Products Laboratory, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cullen, Dan" sort="Cullen, Dan" uniqKey="Cullen D" first="Dan" last="Cullen">Dan Cullen</name>
<affiliation wicri:level="2">
<nlm:affiliation>USDA Forest Products Laboratory, Madison, Wisconsin, USA dcullen@wisc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>USDA Forest Products Laboratory, Madison, Wisconsin</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="eISSN">1098-5336</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Culture Media (chemistry)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Lignin (metabolism)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Proteome (analysis)</term>
<term>Wolfiporia (chemistry)</term>
<term>Wolfiporia (genetics)</term>
<term>Wolfiporia (growth & development)</term>
<term>Wolfiporia (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Carbone (métabolisme)</term>
<term>Lignine (métabolisme)</term>
<term>Milieux de culture (composition chimique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Protéome (analyse)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Wolfiporia (composition chimique)</term>
<term>Wolfiporia (croissance et développement)</term>
<term>Wolfiporia (génétique)</term>
<term>Wolfiporia (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Culture Media</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Fungal Proteins</term>
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Protéome</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Wolfiporia</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Milieux de culture</term>
<term>Wolfiporia</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Wolfiporia</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Wolfiporia</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Wolfiporia</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Wolfiporia</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Wolfiporia</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbone</term>
<term>Lignine</term>
<term>Protéines fongiques</term>
<term>Wolfiporia</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Mass Spectrometry</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Spectrométrie de masse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>UNLABELLED</b>
</p>
<p>Certain wood decay basidiomycetes, collectively referred to as brown rot fungi, rapidly depolymerize cellulose while leaving behind the bulk of cell wall lignin as a modified residue. The mechanism(s) employed is unclear, but considerable evidence implicates the involvement of diffusible oxidants generated via Fenton-like chemistry. Toward a better understanding of this process, we have examined the transcriptome and secretome of Wolfiporia cocos when cultivated on media containing glucose, purified crystalline cellulose, aspen (Populus grandidentata), or lodgepole pine (Pinus contorta) as the sole carbon source. Compared to the results obtained with glucose, 30, 183, and 207 genes exhibited 4-fold increases in transcript levels in cellulose, aspen, and lodgepole pine, respectively. Mass spectrometry identified peptides corresponding to 64 glycoside hydrolase (GH) proteins, and of these, 17 corresponded to transcripts upregulated on one or both woody substrates. Most of these genes were broadly categorized as hemicellulases or chitinases. Consistent with an important role for hydroxyl radical in cellulose depolymerization, high transcript levels and upregulation were observed for genes involved in iron homeostasis, iron reduction, and extracellular peroxide generation. These patterns of regulation differ markedly from those of the closely related brown rot fungus Postia placenta and expand the number of enzymes potentially involved in the oxidative depolymerization of cellulose.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>IMPORTANCE</b>
</p>
<p>The decomposition of wood is an essential component of nutrient cycling in forest ecosystems. Few microbes have the capacity to efficiently degrade woody substrates, and the mechanism(s) is poorly understood. Toward a better understanding of these processes, we show that when grown on wood as a sole carbon source the brown rot fungus W. cocos expresses a unique repertoire of genes involved in oxidative and hydrolytic conversions of cell walls.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27107121</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>03</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5336</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>82</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2016</Year>
<Month>07</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome and Secretome Analyses of the Wood Decay Fungus Wolfiporia cocos Support Alternative Mechanisms of Lignocellulose Conversion.</ArticleTitle>
<Pagination>
<MedlinePgn>3979-3987</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/AEM.00639-16</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED">Certain wood decay basidiomycetes, collectively referred to as brown rot fungi, rapidly depolymerize cellulose while leaving behind the bulk of cell wall lignin as a modified residue. The mechanism(s) employed is unclear, but considerable evidence implicates the involvement of diffusible oxidants generated via Fenton-like chemistry. Toward a better understanding of this process, we have examined the transcriptome and secretome of Wolfiporia cocos when cultivated on media containing glucose, purified crystalline cellulose, aspen (Populus grandidentata), or lodgepole pine (Pinus contorta) as the sole carbon source. Compared to the results obtained with glucose, 30, 183, and 207 genes exhibited 4-fold increases in transcript levels in cellulose, aspen, and lodgepole pine, respectively. Mass spectrometry identified peptides corresponding to 64 glycoside hydrolase (GH) proteins, and of these, 17 corresponded to transcripts upregulated on one or both woody substrates. Most of these genes were broadly categorized as hemicellulases or chitinases. Consistent with an important role for hydroxyl radical in cellulose depolymerization, high transcript levels and upregulation were observed for genes involved in iron homeostasis, iron reduction, and extracellular peroxide generation. These patterns of regulation differ markedly from those of the closely related brown rot fungus Postia placenta and expand the number of enzymes potentially involved in the oxidative depolymerization of cellulose.</AbstractText>
<AbstractText Label="IMPORTANCE">The decomposition of wood is an essential component of nutrient cycling in forest ecosystems. Few microbes have the capacity to efficiently degrade woody substrates, and the mechanism(s) is poorly understood. Toward a better understanding of these processes, we show that when grown on wood as a sole carbon source the brown rot fungus W. cocos expresses a unique repertoire of genes involved in oxidative and hydrolytic conversions of cell walls.</AbstractText>
<CopyrightInformation>Copyright © 2016, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gaskell</LastName>
<ForeName>Jill</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>USDA Forest Products Laboratory, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blanchette</LastName>
<ForeName>Robert A</ForeName>
<Initials>RA</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stewart</LastName>
<ForeName>Philip E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>BonDurant</LastName>
<ForeName>Sandra Splinter</ForeName>
<Initials>SS</Initials>
<AffiliationInfo>
<Affiliation>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Adams</LastName>
<ForeName>Marie</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sabat</LastName>
<ForeName>Grzegorz</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>University of Wisconsin-Madison Biotechnology Center, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kersten</LastName>
<ForeName>Phil</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>USDA Forest Products Laboratory, Madison, Wisconsin, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cullen</LastName>
<ForeName>Dan</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>USDA Forest Products Laboratory, Madison, Wisconsin, USA dcullen@wisc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>06</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>11132-73-3</RegistryNumber>
<NameOfSubstance UI="C036909">lignocellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000070660" MajorTopicYN="N">Wolfiporia</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>04</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27107121</ArticleId>
<ArticleId IdType="pii">AEM.00639-16</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.00639-16</ArticleId>
<ArticleId IdType="pmc">PMC4907202</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biotechnol. 2007 Feb 20;128(3):500-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17218034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2011 Apr;38(4):541-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20711629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1954-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19193860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Oct;73(19):6241-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17660304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2012 Apr;94(2):323-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22391968</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2005 Oct 07;5:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16212653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biocontrol Sci. 2015;20(2):105-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26133508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2008 Sep 1;101(1):39-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18421796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15079-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D699-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24297253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2012 Aug;95(4):979-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22718248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2013 Jan;79(2):488-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23124232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2005 Sep;4(9):1265-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15958392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(11):e27807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22132148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 1999 Sep 24;75(1):57-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10704993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2012 Sep 20;12:186</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22992189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Apr;76(7):2091-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20154118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Nov;77(22):7933-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21948841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biotechnol. 2001 Apr 27;87(1):43-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11267698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24270786</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2015 Apr;47(4):410-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25706625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 Apr;87(8):2936-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Jul;72(7):4871-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jun;75(12):4058-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19376920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Nov 20;531(3):483-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12435597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Aug 28;9:402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18755027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(11):3599-610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20400566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2008 Jan;104(1):185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17850312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2006 Dec;8(12):2214-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17107562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Mar 21;6(1):41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23514094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jul;77(13):4499-507</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2014 Dec 04;10(12):e1004759</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25474575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2003 Sep 1;75(17):4646-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14632076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2016 Jun 30;82(14):4387-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27208101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Apr 29;111(17 ):6287-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 29;336(6089):1715-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Jan;70(1):324-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14711659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1999 Feb;65(2):674-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9925599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9923-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24958869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):5458-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22434909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2013 Nov-Dec;105(6):1350-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23935031</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Minnesota</li>
<li>Montana</li>
<li>Wisconsin</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Gaskell, Jill" sort="Gaskell, Jill" uniqKey="Gaskell J" first="Jill" last="Gaskell">Jill Gaskell</name>
</region>
<name sortKey="Adams, Marie" sort="Adams, Marie" uniqKey="Adams M" first="Marie" last="Adams">Marie Adams</name>
<name sortKey="Blanchette, Robert A" sort="Blanchette, Robert A" uniqKey="Blanchette R" first="Robert A" last="Blanchette">Robert A. Blanchette</name>
<name sortKey="Bondurant, Sandra Splinter" sort="Bondurant, Sandra Splinter" uniqKey="Bondurant S" first="Sandra Splinter" last="Bondurant">Sandra Splinter Bondurant</name>
<name sortKey="Cullen, Dan" sort="Cullen, Dan" uniqKey="Cullen D" first="Dan" last="Cullen">Dan Cullen</name>
<name sortKey="Kersten, Phil" sort="Kersten, Phil" uniqKey="Kersten P" first="Phil" last="Kersten">Phil Kersten</name>
<name sortKey="Sabat, Grzegorz" sort="Sabat, Grzegorz" uniqKey="Sabat G" first="Grzegorz" last="Sabat">Grzegorz Sabat</name>
<name sortKey="Stewart, Philip E" sort="Stewart, Philip E" uniqKey="Stewart P" first="Philip E" last="Stewart">Philip E. Stewart</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001617 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001617 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27107121
   |texte=   Transcriptome and Secretome Analyses of the Wood Decay Fungus Wolfiporia cocos Support Alternative Mechanisms of Lignocellulose Conversion.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27107121" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020